

GERMACRANOLIDES FROM *JURINEA ERIOBASIS*

A. RUSTAIYAN and M. GANJI

Department of Chemistry, Shahid Beheshty University, Eeven, Tehran, Iran

(Received 23 September 1987)

Key Word Index—*Jurinea eriobasis*; Compositae; sesquiterpene lactones; pectorolide derivatives.

Abstract—The aerial parts of *Jurinea eriobasis* afforded, in addition to pectorolide, 4'-hydroxypectorolide and alatolide, three further closely related lactones, the structures of which were elucidated by high field ¹H NMR spectroscopy.

INTRODUCTION

The large genus *Jurinea* (tribe Cynareae, subtribe Carduinae) with about 250 species is distributed over central and south Europe, and south-west and central Asia. Several species have been studied chemically [1]. Most widespread are germacranolides oxygenated at C-14 and C-15. We now have studied a species from Iran, *J. eriobasis* DC.

RESULTS AND DISCUSSION

The extract of the aerial parts afforded polar fractions which gave by TLC the known germacranolides pectorolide (1) [2], 4-hydroxypectorolide (3) [3] and alatolide (6) [4] as well as three new ones, the acetate 3 and the epoxides 4 and 5.

The structure of 3 was deduced from its ¹H NMR spectrum (Table 1) which differed from that of 2 mainly by the downfield shift of the H-14 signals and the presence of an acetate methyl singlet (δ 2.08). Spin decoupling allowed the assignment of all signals. The observed couplings further indicated that the stereochemistry was identical with that of 2.

The ¹H NMR spectral data of 4 (Table 1) were more pronounced than those of 3 though again a germacranolide with an 8 α -hydroxy-methacryloyloxy group had to be present as followed from several characteristic signals. However, one of the olefinic double bonds was replaced by an epoxide group as could be deduced from the doublet at δ 2.92 and the upfield shift of the H-14 signals. This was supported by the chemical shift of H-5 which could be assigned by spin decoupling. The observed couplings indicated the proposed stereochemistry.

The ¹H NMR spectrum of 5 (Table 1) differed from that of 4 by the presence of a lowfield H-1 signal and an upfield shifted H-5 signal. Thus the lactone 5 is probably the isomeric 4,5-epoxide. Again the configurations followed from the observed couplings.

The chemistry of this *Jurinea* species again shows that 14,15-oxygenated germacranolides are characteristic for this genus. These lactones are also present in *Dicoma* species which may indicate the relationship of the tribes Cynareae and Mutisieae.

EXPERIMENTAL

The plant material was collected in summer 1980, 60 km north of Tehran, Iran, and identified by Dr E. Massumi (Tehran, Iran). The air-dried aerial parts (300 g, voucher, deposited in the Herbarium of the Dept of Botany, Shahid Beheshty University, Tehran, Iran) were cut into small pieces and extracted at room temp. with MeOH-Et₂O-petrol (1:1:1) for 24 hr. After evapn under red. pressure the residue was treated with MeOH to remove long chain saturated hydrocarbons. The extract was separated by CC (silica gel). The polar fractions (1: Et₂O and 2:Et₂O-MeOH, 4:1) were further separated by TLC (silica gel, PF 254). Repeated TLC of fraction 1 (Et₂O) gave 30 mg 1, 10 mg 6, 45 mg 3 (R_f 0.64), 5 mg 4 (R_f 0.50) and 5 mg 5 (R_f 0.45). Repeated TLC of fraction 2 (Et₂O-MeOH, 9:1) afforded 50 mg 2. Known compounds were identified by comparing the 400 MHz ¹H NMR spectra with those of authentic material.

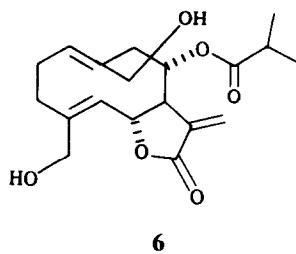
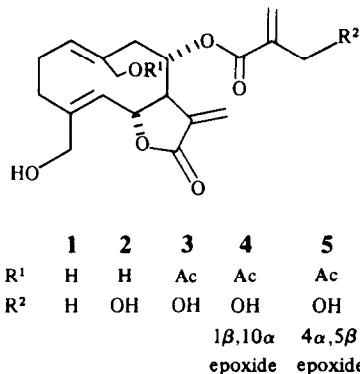



Table 1. ^1H NMR spectral data of compounds **3–5** (400 MHz, CDCl_3)

H	3	4	5
1	5.28 br dd	2.92 dd	5.62 dd
2	2.39 dddd	2 α 1.52 dddd	2.38 m
2 \circ	2.35 dddd	2 β 2.24 dddd	
3 α	2.63 ddd	2.55 ddd	1.38 m
3 β	2.15 ddd	2.41 ddd	2.11 m
5	4.93 br d	5.39 br d	2.86 d
6	5.18 ddd	5.20 dd	4.75 dd
7	3.11 dddd	3.08 dddd	3.28 dddd
8	5.19 ddd	5.21 ddd	4.90 ddd
9 α	2.51 dd	1.56 dd	2.41 dd
9 β	2.78 br d	2.76 br d	2.61 br d
13	6.29 d	6.29 d	6.38 d
13 \circ	5.73 d	5.74 d	5.75 d
14	4.60 br d	4.49 d	4.77 br d
14 \circ	4.47 br d	3.78 d	4.65 br d
15	4.24 br d	4.44 d	4.37 br d
15 \circ	4.16 br d	4.33 d	3.82 br d
OCOR			
	6.26 br s	6.26 br s	6.26 br s
	5.92 br s	OR { 5.97 br s	OR { 5.94 br s
		4.33 br s	4.35 br s
OAc	2.08 s	2.15 s	2.09 s

J[Hz]: Compound **3**: 1,2 α = 6.5; 1,2 β = 11; 2 α ,3 α = 6.5; 2 α ,3 β = 3; 2 β ,3 α = 12; 3 α ,2 β = 12; 5,6 = 10; 6,7 = 8; 7,8 = 9; 7,13 = 7,13' = 3; 8,9 α = 10.5; 8,9 β = 12; 9 α ,9 β = 13; compound **4**: 1,2 α = 2.5; 1,2 β = 12; compound **5**: 5,6 = 9.

4'-Hydroxypectorolide-14-O-acetate (3). Colourless oil; IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm^{-1} : 3590 (OH), 1760 (γ -lactone), 1720 (ester); MS *m/z* (rel. int.): 406 [M]⁺ (0.2) ($\text{C}_{21}\text{H}_{26}\text{O}_8$), 346.141 [M – HOAc]⁺ (4) (calcd for $\text{C}_{19}\text{H}_{22}\text{O}_6$: 346.141), 244 [346 – R – COOH]⁺ (22), 226 [244 – H₂O]⁺ (24), 85 (100); $[\alpha]_D^{24} \times 110$ (CHCl_3 ; *c* 0.8).

1 β ,10 α -Epoxy-4'-hydroxypectorolide-14-O-acetate (4). Colourless oil; IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm^{-1} : 3590 (OH), 1760 (γ -lactone), 1725 (ester); MS *m/z* (rel. int.): 422 [M]⁺ (0.1) ($\text{C}_{21}\text{H}_{26}\text{O}_9$), 349 [M – AcOCH₂]⁺ (0.5), 247 [349 – RCOOH]⁺ (8), 69 (100); $[\alpha]_D^{24} \times 34$ (CHCl_3 ; *c* 0.25).

4 α ,5 β -Epoxy-4'-hydroxypectorolide-14-O-acetate (5). Colourless oil; IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm^{-1} : 3590 (OH), 1760 (γ -lactone), 1720 (ester); MS *m/z* (rel. int.): 422 [M]⁺ (3) ($\text{C}_{21}\text{H}_{26}\text{O}_9$), 391 [M – CH₂OH]⁺ (25), 279 [391 – RCOOH – ketene]⁺ (65), 197 (100); $[\alpha]_D^{24} \times 28$ (CHCl_3 ; *c* 0.1).

Acknowledgements—A. R. thanks Prof. Dr F. Bohlmann (Technical University of Berlin), for providing the opportunity to work in his Institute and for helpful discussions. The help in structure elucidation of Dr J. Jakupovic (Technical University of Berlin) is gratefully acknowledged.

REFERENCES

1. Seaman, F. C. (1982) *Bot. Rev.* **48**, 485.
2. Mompon, B. and Toubiana, R. (1976) *Tetrahedron* **32**, 2545.
3. Jakupovic, J., Baruah, R. N., Chau-Thi, T. V., Bohlmann, F., Msomthi, J. D. and Schmeda-Hirschmann, G. (1985) *Planta Med.* 378.
4. Drodz, B., Samek, Z., Holub, M. and Herout, V. (1973) *Coll. Czech. Chem. Commun.* **38**, 727.